
8 Grid-Imposed Frequency VSC
System: Control in dq-Frame

8.1 INTRODUCTION

Chapter 5 presented dynamic models for the two-level VSC in αβ-frame and dq-
frame and briefly discussed its control based on generic block diagrams of Figures
5.5 and 5.7. Chapter 6 introduced the three-level NPC as an extension of the two-
level VSC and established that the dynamic model of the three-level NPC is identical
to that of the two-level VSC, except that the three-level NPC requires a DC-side
voltage equalizing system to maintain DC-side capacitor voltages, each at half the
net DC-side voltage. Thus, Chapter 6 presented a unified model for the three-level
NPC and the two-level VSC (Fig. 6.18 and 6.19). Chapter 7 introduced a class of
VSC systems referred to as grid-imposed frequency VSC systems. On the basis of the
unified model of Chapter 6, Chapter 7 presented αβ-frame models and controls for
two members of the family of the grid-imposed frequency VSC systems, namely, the
real-/reactive-power controller and the controlled DC-voltage power port. In parallel
with Chapter 7, this chapter presents dq-frame models and controls for the real-
/reactive-power controller and the controlled DC-voltage power port.

As discussed in Chapter 7, compared to the abc-frame control, the αβ-frame
control of a grid-imposed frequency VSC system reduces the number of plants to
be controlled from three to two. Moreover, instantaneous decoupled control of the
real and reactive power, exchanged between the VSC system and the AC system,
is possible in αβ-frame. However, the control variables, that is, feedback signals,
feed-forward signals, and control signals are sinusoidal functions of time. It is shown
in this chapter that the dq-frame control of a grid-imposed VSC system features
all merits of the αβ-frame control, in addition to the advantage that the control
variables are DC quantities in the steady state. This feature it remarkably facilitates
the compensator design, especially in variable-frequency scenarios.

To achieve zero steady-state error in the αβ-frame control, the bandwidth of the
closed-loop system must be adequately larger than the AC system frequency; alter-
natively, the compensators can include complex-conjugate pairs of poles at the AC
system frequency and other frequencies of interest, to increase the loop gain. In the
dq-frame control, however, zero steady-state error is readily achieved by including
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integral terms in the compensators since the control variables are DC quantities [77].
The dq-frame representation and control of a grid-imposed VSC system is also con-
sistent with the approach used for the dynamic analysis of the large power system. The
small-signal dynamics of the power system is conventionally modeled and analyzed
in dq-frame [42].

Compared to the αβ-frame control, the dq-frame control requires a synchroniza-
tion mechanism that is usually achieved through the phase-locked loop (PLL); this
requirement can be regarded a demerit of the dq-frame control.

8.2 STRUCTURE OF GRID-IMPOSED FREQUENCY VSC SYSTEM

Figure 8.1 shows a schematic diagram of a grid-imposed frequency VSC system. The
VSC represents either a three-level NPC with a DC-side voltage equalizing scheme
or a two-level VSC. In either case, the VSC is modeled by a lossless power processor
including an equivalent DC-bus capacitor, a current source representing the VSC
switching power loss, and series on-state resistances at the AC side representing the
VSC conduction power loss, as Figure 8.1 shows. The DC side of the VSC may be
interfaced with a DC voltage source or a DC power source. Each phase of the VSC
is interfaced with the AC system via a series RL branch.

In this chapter, as an approximation we consider an infinitely stiff AC system.
Thus, the AC system is modeled by an ideal three-phase voltage source, Vsabc.1 It is
also assumed that Vsabc is balanced, sinusoidal, and of a relatively constant frequency.
The VSC system of Figure 8.1 exchanges the real- and reactive-power components
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FIGURE 8.1 Schematic diagram of a grid-imposed frequency VSC system.

1In Chapter 11, we investigate the dynamics of a VSC system under nonstiff AC system conditions.
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Ps(t) and Qs(t) with the AC system, at the point of common coupling (PCC). De-
pending on the control strategy, the VSC system of Figure 8.1 is used as either a real-/
reactive-power controller or a controlled DC-voltage power port. In Chapter 12, we
employ the real-/reactive-power controller as part of a back-to-back HVDC converter
system. The controlled DC-voltage power port is employed as part of the static com-
pensator (STATCOM), the back-to-back HVDC converter system, and variable-speed
wind-power units, in Chapters 11, 12, and 13, respectively.

8.3 REAL-/REACTIVE-POWER CONTROLLER

The grid-imposed frequency VSC system of Figure 8.1 can be employed as a real-/
reactive-power controller. As such, the VSC DC side is connected in parallel with
a DC voltage source and the objective is to control the instantaneous real and reac-
tive power that the VSC system exchanges with the AC system, that is, Ps(t) and
Qs(t).

8.3.1 Current-Mode Versus Voltage-Mode Control

Two main methods exist for controlling Ps and Qs in the VSC system of Figure 8.1.
The first approach that is known as voltage-mode control and illustrated in Figure 8.2
has been dominantly utilized in high-voltage/-power applications such as in FACTS
controllers [44, 45], although its industrial applications have also been reported [47].
Figure 8.2 illustrates that in a voltage-controlled VSC system, the real and reactive

AC system

Phase shifter/scaler
of Figure 4.5

++

PCC

V
SC

 a
nd

 P
W

M

Vtabc

Vtabc

Vsabc

Vsabc

Ps

Psref K1(s)

A (t)

φ (t)

K2(s)Qsref

Qs

Qs

Ps

L

–

–

FIGURE 8.2 Schematic diagram of a voltage-controlled real-/reactive-power controller.
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power are controlled, respectively, by the phase angle and the amplitude of the VSC
AC-side terminal voltage relative to the PCC voltage [46]. If the amplitude and phase
angle of Vtabc are close to those of Vsabc, the real and reactive power are almost
decoupled and two independent compensators can be employed for their control
(Fig. 8.2). The voltage-mode control is simple and has a low number of control loops.
However, the main shortcoming of the voltage-mode control is that there is no control
loop closed on the VSC line current. Consequently, the VSC is not protected against
overcurrents, and the current may undergo large excursions if the power commands
are rapidly changed or faults take place in the AC system.

The second approach to the control of the real and reactive power in the VSC system
of Figure 8.1 is referred to as the current-mode control. In this approach, the VSC
line current is tightly regulated by a dedicated current-control scheme, through the
VSC AC-side terminal voltage. Then, the real and reactive power are controlled by the
phase angle and the amplitude of the VSC line current with respect to the PCC voltage.
Thus, due to the current regulation scheme, the VSC is protected against overcurrent
conditions. Other advantages of the current-mode control include robustness against
variations in parameters of the VSC system and the AC system, superior dynamic
performance, and higher control precision [68]. We demonstrated the basics of the
current-mode control strategy in Chapter 3 and will exclusively focus on this method
throughout the rest of the book.

Figure 8.3 shows a schematic diagram of a current-controlled real-/reactive-power
controller, illustrating that the control is performed in dq-frame. Thus, Ps and Qs are
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FIGURE 8.3 Schematic diagram of a current-controlled real-/reactive-power controller in
dq-frame.
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controlled by the line current components id and iq. The feedback and feed-forward
signals are first transformed to the dq-frame and then processed by compensators to
produce the control signals in dq-frame. Finally, the control signals are transformed
to the abc-frame and fed to the VSC (Fig. 8.3). To protect the VSC, the reference
commands idref and iqref are limited by the corresponding saturation blocks (not
shown in the figure). It is noted that the block diagram of Figure 8.3 is a special
case of the general block diagram of Figure 4.27. In Chapter 12, we employ the
real-/reactive-power controller as part of the back-to-back HVDC converter system.

8.3.2 Representation of Space Phasors in dq-Frame

In this chapter, we need to express space phasors in dq-frame. The transformation
and its inverse were extensively discussed in Chapter 4. However, they are briefly
reviewed in this section, for ease of reference.

Consider the space phasor
−→
f (t) = fα + jfβ. The dq- to αβ-frame transformation

is defined as

fd + jfq = −→f (t)e−jρ(t) = (fα + jfβ)e−jρ(t), (8.1)

which is a phase shift in
−→
f (t) by −ρ(t). The angle ρ(t) can be chosen arbitrarily.

However, if, for example,
−→
f (t) = f̂ ej(ωt+θ0), then choosing ρ(t) to be equal to ωt

results in the space phasor

fd + jfq = f̂ ej(ωt+θ0)︸ ︷︷ ︸
−→
f (t)

e−jωt = f̂ ejθ0 ,

which is no longer time-varying and, therefore, fd and fq are DC quantities. The
inverse transformation is

−→
f (t) = fα + jfβ = (fd + jfq)ejρ(t). (8.2)

8.3.3 Dynamic Model of Real-/Reactive-Power Controller

Assume that the AC system voltage in the VSC system of Figure 8.3 is expressed as

Vsa(t) = V̂s cos (ω0t + θ0) ,

Vsb(t) = V̂s cos

(
ω0t + θ0 − 2π

3

)
,

Vsc(t) = V̂s cos

(
ω0t + θ0 − 4π

3

)
, (8.3)
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where V̂s is the peak value of the line-to-neutral voltage, ω0 is the AC system (source)
frequency, and θ0 is the source initial phase angle. Based on (4.2), the space-phasor
equivalent of Vs−abc is

−→
Vs (t) = V̂se

j(ω0t+θ0). (8.4)

Dynamics of the AC side of the VSC system of Figure 8.3 are described by the
following space-phasor equation (refer to (7.11) for details):

L
d
−→
i

dt
= −(R+ ron)

−→
i +−→Vt −−→Vs . (8.5)

Substituting for
−→
Vs from (8.4) in (8.5), we deduce

L
d
−→
i

dt
= −(R+ ron)

−→
i +−→Vt − V̂se

j(ω0t+θ0). (8.6)

Then, we use (8.2) to express (8.6) in a dq-frame. Thus, substituting for
−→
i = idqe

jρ

and
−→
Vt = Vtdqe

jρ in (8.6), we deduce

L
d

dt

(
idqe

jρ
) = −(R+ ron)

(
idqe

jρ
)+ (

Vtdqe
jρ
)− V̂se

j(ω0t+θ0), (8.7)

where fdq = fd + jfq. Equation (8.7) can be rewritten as

L
d

dt

(
idq

) = −j(Ldρ
dt

)
idq − (R+ ron)idq + Vtdq − V̂se

j(ω0t+θ0−ρ). (8.8)

Decomposing (8.8) into real and imaginary components, we deduce

L
did

dt
=

(
L
dρ

dt

)
iq − (R+ ron) id + Vtd − V̂s cos (ω0t + θ0 − ρ) , (8.9)

L
diq

dt
= −

(
L
dρ

dt

)
id − (R+ ron) iq + Vtq − V̂s sin (ω0t + θ0 − ρ) . (8.10)
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Equations (8.9) and (8.10) are not in the standard state-space form. Thus, we introduce
the new control variable ω to (8.9) and (8.10), where ω = dρ/dt. This yields

L
did

dt
= Lω(t)iq − (R+ ron)id + Vtd − V̂s cos(ω0t + θ0 − ρ), (8.11)

L
diq

dt
= −Lω(t)id − (R+ ron)iq + Vtq − V̂s sin(ω0t + θ0 − ρ), (8.12)

dρ

dt
= ω(t). (8.13)

In (8.11)–(8.13), id , iq, and ρ are the state variables, and Vtd , Vtq, andω are the control
inputs. The system described by (8.11)–(8.13) is nonlinear due to the presence of the
terms ωid , ωiq, cos(ω0t + θ0 − ρ), and sin(ω0t + θ0 − ρ).

To further investigate (8.11)–(8.13), assume that ρ has a zero initial condition and
ω(t) ≡ 0. Consequently, ρ remains zero at all times, and (8.11) and (8.12) assume the
forms

L
did

dt
= −(R+ ron)id + Vtd − V̂s cos(ω0t + θ0), (8.14)

L
diq

dt
= −(R+ ron)iq + Vtq − V̂s sin(ω0t + θ0). (8.15)

Equations (8.14) and (8.15) describe two, decoupled, first-order systems that are
excited by inputs −V̂s cos(ω0t + θ0) and −V̂s sin(ω0t + θ0), respectively. Thus, the
superposition principle requires that id and iq also include sinusoidal components,
irrespective of Vtd and Vtq. This result is expected since if ρ = 0, then based on (8.1)
the dq-frame is the same as the αβ-frame in which the signals are sinusoidal functions
of time. In other words, (8.14) and (8.15) represent the VSC system in αβ-frame;
comparison of (8.14) and (8.15), respectively, with (7.12) and (7.13) confirms this
conclusion.

The foregoing discussion shows that the usefulness of the dq-frame depends on
proper selection of ω and ρ. For the VSC system of Figure 8.3, if ω = ω0 and ρ(t) =
ω0t + θ0, then (8.11) and (8.12) take the forms

L
did

dt
= Lω0iq − (R+ ron)id + Vtd − V̂s, (8.16)

L
diq

dt
= −Lω0id − (R+ ron)iq + Vtq, (8.17)

which describe a second-order linear system that is excited by the constant input V̂s.
Thus, ifVtd andVtq are DC variables, id and iq are also DC variables in the steady state.
The mechanism to ensure ρ(t) = ω0t + θ0 is referred to as the PLL. The following
section presents the structure, model, and stabilization of the PLL.
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8.3.4 Phase-Locked Loop (PLL)

Substituting for
−→
Vs (t) from (8.4) in (8.1), we deduce

Vsd = V̂s cos(ω0t + θ0 − ρ), (8.18)

Vsq = V̂s sin(ω0t + θ0 − ρ). (8.19)

Thus, (8.11)–(8.13) can be rewritten as

L
did

dt
= Lω(t)iq − (R+ ron)id + Vtd − Vsd, (8.20)

L
diq

dt
= −Lω(t)id − (R+ ron)iq + Vtq − Vsq, (8.21)

dρ

dt
= ω(t). (8.22)

Based on (8.19), ρ(t) = ω0t + θ0 corresponds to Vsq = 0. Therefore, we devise a
mechanism to regulate Vsq at zero. This can be achieved based on the following
feedback law:

ω(t) = H(p)Vsq(t), (8.23)

where H(p) is a linear transfer function (compensator) and p = d(·)/dt is a differ-
entiation operator. Substituting for Vsq from (8.19) in (8.23), and substituting for ω
from (8.23) in (8.22), we deduce

dρ

dt
= H(p)V̂s sin(ω0t + θ0 − ρ). (8.24)

Equation (8.24) describes a nonlinear dynamic system, which is referred to as PLL
[49], [78–80]. The function of the PLL is to regulate ρ at ω0t + θ0. However,
in view of its nonlinear characteristic, the PLL can exhibit unsatisfactory behav-
ior under certain conditions. For example, if the PLL starts from an initial condition
corresponding to ρ(0) = 0 and ω(0) = 0, then the term V̂sH(p) sin(ω0t + θ0 − ρ) in
(8.24) is a sinusoidal function of time with frequency ω0. Then, if H(s) has a low-
pass frequency response, the right-hand side of (8.24) and also dρ/dt exhibit small
sinusoidal perturbations about zero, the PLL falls in a limit cycle, and ρ does not
track ω0t + θ0. To prevent the limit cycle from taking place, the control law can be
modified as

ω(t) = H(p)Vsq(t), ω(0) = ω0 and ωmin ≤ ω ≤ ωmax, (8.25)

where ω(t) has the initial value ω(0) = ω0 and is limited to the lower and upper limits
of, respectively, ωmin and ωmax. ωmin and ωmax are selected to be close to ω0 and
thus to define a narrow range of variations for ω(t). On the other hand, the range of
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FIGURE 8.4 Control block diagram of the PLL.

variations should be selected adequately wide to permit excursions of ω(t) during
transients. If the PLL tracks ω0t + θ0, the term ω0t + θ0 − ρ is close to zero and
sin(ω0t + θ0 − ρ) ≈ (ω0t + θ0 − ρ). Therefore, (8.24) can be simplified to

dρ

dt
= V̂sH(p)(ω0t + θ0 − ρ). (8.26)

Equation (8.26) represents a classical feedback control loop in which ω0t + θ0 is the
reference input, ρ is the output, and V̂sH(s) is the transfer function of the effective
compensator, as shown in the block diagram of Figure 8.4.

Figure 8.5 illustrates a schematic diagram of the PLL based on (8.19), (8.22), and
(8.23). Figure 8.5 shows that the PLL transforms Vsabc to Vsdq (based on (4.73)) and
adjusts the rotational speed of the dq-frame, that is, ω, such that Vsq is forced to zero
in the steady state. The end result is that ρ = ω0t + θ0 and Vsd = V̂s. It should be
pointed out that in the block diagram of Figure 8.5, the integrator of (8.22) is realized
by means of a voltage-controlled oscillator (VCO). The VCO can be regarded as a
resettable integrator whose output, ρ, is reset to zero whenever it reaches 2π.

FIGURE 8.5 Schematic diagram of the PLL.
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8.3.5 Compensator Design for PLL

Dynamic performance of the PLL is highly influenced by the compensator H(s).
Consider the block diagram of Figure 8.4 indicating that the reference signal,ω0t + θ0,
is composed of a constant component, that is, θ0, and a ramp function, that is, ω0t.
Since the loop gain includes an integral term, ρ tracks the constant component of the
reference signal with zero steady-state error. However, to ensure a zero steady-state
error for the ramp component, the loop gain must include at least two integrators.
Therefore, H(s) must include at least one integral term, that is, one pole at s = 0. The
other poles and zeros of H(s) are determined mainly on the basis of the closed-loop
bandwidth of the PLL and stability indices such as phase margin and gain margin.

Another consideration in designing H(s) is the issue of unbalanced and/or har-
monically distorted three-phase voltages. Assume thatVsabc represents an unbalanced
voltage with a negative-sequence fundamental component and a fifth-order harmonic
component [81], as

Vsa(t) = V̂s cos (ω0t + θ0)+ k1V̂s cos (ω0t + θ0)

+k5V̂s cos (5ω0t + φ5) ,

Vsb(t) = V̂s cos

(
ω0t + θ0 − 2π

3

)
+ k1V̂s cos

(
ω0t + θ0 − 4π

3

)
+k5V̂s cos

(
5ω0t + φ5 − 4π

3

)
,

Vsc(t) = V̂s cos

(
ω0t + θ0 − 4π

3

)
+ k1V̂s cos

(
ω0t + θ0 − 2π

3

)
+k5V̂s cos

(
5ω0t + φ5 − 2π

3

)
, (8.27)

where k1 and k5 are the amplitudes of the negative-sequence (fundamental) and fifth-
order harmonic components, respectively, relative to the amplitude of the positive-
sequence (fundamental) component. Based on (4.2), the space phasor corresponding
to Vsabc is

−→
Vs = V̂se

j(ω0t+θ0) + k1V̂se
−j(ω0t+θ0) + k5V̂se

−j(5ω0t+φ5). (8.28)

If the PLL of Figure 8.5 is under a steady-state operating condition, that is, ρ =
ω0t + θ0, then based on (8.1) Vsd and Vsq are

Vsd = V̂s + k1V̂s cos (2ω0t + 2θ0)+ k5V̂s cos (6ω0t + θ0 + φ5) , (8.29)

Vsq = −k1V̂s sin (2ω0t + 2θ0)− k5V̂s sin (6ω0t + θ0 + φ5). (8.30)

Equations (8.29) and (8.30) indicate that, in addition to DC components, Vsd and
Vsq include sinusoidal components with frequencies 2ω0 and 6ω0. Typical values
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of k1 and k5 are assumed to be 0.01 and 0.025, respectively [81]. However, under
single-phase to ground faults, k1 can be as large as 0.5. The sinusoidal components
of Vsq must be attenuated by H(s). Otherwise, ω and ρ also exhibit fluctuations that
are modulated with feedback and control signals, through abc- to dq-frame and dq-
to abc-frame transformations, and result in generation of undesirable voltage/current
distortions in the VSC system.

Between the two AC components of Vsq, the component with frequency 2ω0 is
more important. The reason is that (i) the frequency of this component is three times
lower than that of the other component and (ii) the magnitude of this component, k1,
can be significantly larger than that of the other component, for example, during a fault.
One approach to attenuate the double-frequency component of Vsq is to ensure that
H(s) exhibits a strong low-pass characteristic. However, this method may compromise
the PLL closed-loop bandwidth. Alternatively, one can include in H(s) one pair of
complex-conjugate zeros, at s = ±j2ω0, to eliminate the double-frequency ripple of
Vsq. The advantage of this technique is that the PLL closed-loop bandwidth is not
sacrificed and can be selected to be arbitrarily large. Example 8.1 illustrates the second
PLL design approach.

EXAMPLE 8.1 Compensator Design for the PLL

Consider the PLL of Figure 8.5 whose input is Vsabc defined by (8.27), where
ω0 = 2π × 60 rad/s and V̂s = 391 V. The objective is to design the PLL com-
pensator H(s).

As explained in Section 8.3.5, H(s) must include one pole at s = 0 and the
complex-conjugate zeros s = ±j2ω0. In addition, to ensure that the loop gain
magnitude continues to drop with the slope of −40 dB/dec for ω > 2ω0, a
double real pole at s = −2ω0 is included in H(s). Thus,

H(s) =
(

h

V̂sn

)
s2 + (2ω0)2

s (s+ 2ω0)2F (s), (8.31)

where V̂sn is the nominal value of V̂s and F (s) is the proper transfer function
with no zero at s = 0. Based on the block diagram of Figure 8.4, the loop gain
is formulated as

	(s) = h
s2 + (2ω0)2

s2(s+ 2ω0)2F (s). (8.32)

Let us assume that we need a gain crossover frequency of ωc = 200 rad/s and a
phase margin of 60◦. If hF (s) = 1, it can be calculated that ∠	(j200) = −210◦.
Thus, to achieve the required phase margin,F (j200) must add 90◦ to ∠	(j200).
As discussed in Example 3.6, a lead compensator can offer an optimum phase
advance to the loop gain. In this example, the required phase advance is fairly
large. Consequently,F (s) can be composed of two cascaded lead compensators,
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each to provide 45◦ at 200 rad/s. Thus,

F (s) =
(
s+ (p/α)

s+ p

)(
s+ (p/α)

s+ p

)
, (8.33)

where

p = ωc
√
α (8.34)

α = 1+ sin δm
1− sin δm

, (8.35)

and δm is the phase of each lead compensator at ωc. If δm = 45◦, based on
(8.33)–(8.35), we calculate F (s) as

F (s) =
(
s+ 83

s+ 482

)2

. (8.36)

Substituting for F (s) from (8.36) in (8.32), we deduce

	(s) = h
(
s2 + 568,516

) (
s2 + 166s+ 6889

)
s2

(
s2 + 1508s+ 568,516

) (
s2 + 964s+ 232,324

) . (8.37)

It then follows from |	(j200)| = 1 and V̂sn = 391 V thath = 2.68× 105. There-
fore, h/V̂sn = 685.42 and the final compensator is

H(s) = 685.42
(
s2 + 568,516

) (
s2 + 166s+ 6889

)
s
(
s2 + 1508s+ 568,516

) (
s2 + 964s+ 232,324

) [(rad/s)/V].

(8.38)

Figure 8.6 depicts the frequency response of 	(jω) based on the compensator
of (8.38). It is observed that |	(jω)| drops with the slope of −40 dB/dec, for
ω � ωc = 200. However, around ωc the slope of |	(jω)| reduces to about−20
dB/dec and ∠	(jω) rises to about −120◦ at ω = ωc, corresponding to a phase
margin of 60◦. Figure 8.6 also illustrates that |	(jω)| continues to drop with
a slope of −40 dB/dec for ω > ωc. This characteristic is desired as the AC
components of Vsq due to the harmonic distortion of Vsabc are attenuated. In
particular, at ω = 6ω0, |	(jω)| is about −30 dB.

Figure 8.7 illustrates the start-up transient of the PLL. Figure 8.7 shows that,
from t = 0 to t = 0.07 s, the compensator output is saturated at ωmin = 2π ×
55 rad/s and, therefore, Vsd and Vsq vary with time. At about t = 0.07 s, Vsq
crosses zero and intends to become negative. Thus,H(s) increasesω to regulate
Vsq at zero. Figure 8.7 indicates that Vsq is regulated at zero within 0.15 s. It
should be noted that ifωmin is selected closer toω0, the start-up transient period
becomes shorter. However, ωmin cannot be selected too close to ω0 since the
PLL would not be able to quickly react to other types of disturbance.
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FIGURE 8.6 Open-loop frequency response of the PLL of Example 8.1.

Figure 8.8 illustrates the dynamic response of the PLL to a sudden imbalance
in Vsabc. Initially, the PLL is in a steady state. At t = 0.05 s, the AC system
voltage Vsabc becomes unbalanced such that V̂s and k1 undergo step changes,
respectively, from 391 to 260 V and from zero to 0.5, and at t = 0.15 s, Vsabc
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FIGURE8.8 Response of the PLL of Example 8.1 to a sudden AC system voltage imbalance.

reverts to its balanced predisturbance condition. In response to the voltage
imbalance, H(s) transiently changes ω, as Figure 8.8 shows, to maintain the
DC component ofVsq at zero. Figure 8.8 also shows thatVsq (andVsd) includes a
120-Hz sinusoidal ripple due to the negative-sequence component of Vsabc. The
ripple is, however, suppressed by H(s), and ω and ρ remain free of distortion.

Figure 8.9 depicts the dynamic response of the PLL to two stepwise changes
inω0, the first one from 2π × 60 = 377 rad/s to 2π × 63 = 396 rad/s at t = 0.05
s, and the other from 396 rad/s to 2π × 57 = 358 rad/s at t = 0.1 s. As Figure
8.9 shows, Vsq is rapidly regulated at zero and ω tracks the changes.

Equation (8.31) denotes that H(s) is normalized such that the constant gain
of the loop gain h is independent of V̂sn. Thus, in subsequent chapters when we
need a PLL, we will employ the compensator of (8.38), but modify its constant
gain, that is, h/V̂sn, according to V̂sn for the specific problem in hand, based on
h = 2.68× 105.

8.4 CURRENT-MODE CONTROL OF REAL-/REACTIVE-POWER
CONTROLLER

With reference to the real-/reactive-power controller of Figure 8.3, based on
(4.83) and (4.84), the real and reactive power delivered to the AC system at
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FIGURE 8.9 Response of the PLL of Example 8.1 to a sudden AC system frequency change.

the PCC are

Ps(t) = 3

2

[
Vsd(t)id(t)+ Vsq(t)iq(t)

]
, (8.39)

Qs(t) = 3

2

[−Vsd(t)iq(t)+ Vsq(t)id(t)
]
, (8.40)

where Vsd and Vsq are the AC system dq-frame voltage components and cannot be
controlled by the VSC system. As described in Section 8.3.4, if the PLL is in a steady
state, Vsq = 0 and (8.39) and (8.40) can be rewritten as

Ps(t) = 3

2
Vsd(t)id(t), (8.41)

Qs(t) = −3

2
Vsd(t)iq(t). (8.42)

Therefore, based on (8.41) and (8.42), Ps(s) and Qs(s) can be controlled by id and iq,
respectively. Let us introduce
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idref (t) = 2

3Vsd
Psref (t), (8.43)

iqref (t) = − 2

3Vsd
Qsref (t). (8.44)

Then, if the control system can provide fast reference tracking, that is, id ≈ idref
and iq ≈ iqref , then Ps ≈ Psref and Qs ≈ Qsref , that is, Ps(t) and Qs(t), can be
independently controlled by their respective reference commands. Since Vsd is a DC
variable (in the steady state), idref and iqref are also DC variables if Psref and Qsref

are constant signals. Thus, as expected, the control system in dq-frame deals with DC
variables, unlike the control system in αβ-frame that deals with sinusoidal signals.

8.4.1 VSC Current Control

The dq-frame control of the real-/reactive-power controller of Figure 8.3 is based on
(8.11) and (8.12). Assuming a steady-state operating condition and substituting for
ω(t) = ω0 in (8.11) and (8.12), we deduce

L
did

dt
= Lω0iq − (R+ ron)id + Vtd − Vsd, (8.45)

L
diq

dt
= −Lω0id − (R+ ron)iq + Vtq − Vsq, (8.46)

in which, based on (5.22) and (5.23), Vtd and Vtq are

Vtd(t) = VDC

2
md(t), (8.47)

Vtq(t) = VDC

2
mq(t). (8.48)

Equations (8.47) and (8.48) represent the VSC model in dq-frame. The model is
applicable to both the two-level VSC and the three-level NPC. In (8.45) and (8.46),
id and iq are state variables, Vtd and Vtq are control inputs, and Vsd and Vsq are
disturbance inputs. Due to the presence of Lω0 terms in (8.45) and (8.46), dynamics
of id and iq are coupled. To decouple the dynamics, we determine md and mq as

md = 2

VDC

(
ud − Lω0iq + Vsd

)
, (8.49)

mq = 2

VDC

(
uq + Lω0id + Vsq

)
, (8.50)

where ud and uq are two new control inputs [69, 82]. Substituting for md and mq in
(8.47) and (8.48), respectively, from (8.49) and (8.50), and substituting for Vtd and
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Vtq from the resultant in (8.45) and (8.46), we deduce

L
did

dt
= −(R+ ron)id + ud, (8.51)

L
diq

dt
= −(R+ ron)iq + uq. (8.52)

Equations (8.51) and (8.52) describe two decoupled, first-order, linear systems. Based
on (8.51) and (8.52), id and iq can be controlled by ud and uq, respectively. Figure 8.10
shows a block representation of thed- andq-axis current controllers of the VSC system
in which ud and uq are the outputs of two corresponding compensators. The d-axis
compensator processes ed = idref − id and provides ud . Then, based on (8.49), ud
contributes to md . Similarly, the q-axis compensator processes eq = iqref − iq and
provides uq that, based on (8.50), contributes to mq. The VSC then amplifies md and
mq by a factor of VDC/2 and generates Vtd and Vtq that, in turn, control id and iq
based on (8.45) and (8.46). On the basis of the above-mentioned control process, one
can sketch the simplified control block diagram of Figure 8.11, which is equivalent
to the control system of Figure 8.10. It should be noted that in the control system of
Figure 8.10, all the control, feed-forward, and feedback signals are DC quantities in
the steady state.

Figure 8.11 indicates that the control plants in both d- and q-axis current-control
loops are identical. Therefore, the corresponding compensators can also be identical.
Consider the d-axis control loop. Unlike theαβ-frame control where the compensators
are fairly difficult to optimize and typically are of high dynamic orders, kd(s) can be
a simple proportional-integral (PI) compensator to enable tracking of a DC reference
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FIGURE8.11 Simplified block diagram of the current-controlled VSC system of Figure 8.10.

command. Let

kd(s) = kps+ ki

s
, (8.53)

where kp and ki are proportional and integral gains, respectively. Thus, the loop gain
is

	(s) =
(
kp

Ls

)
s+ ki/kp

s+ (R+ ron)/L
. (8.54)

It is noted that due to the plant pole at s = −(R+ ron)/L, which is fairly close to the
origin, the magnitude and the phase of the loop gain start to drop from a relatively low
frequency. Thus, the plant pole is first canceled by the compensator zero s = −ki/kp,
and the loop gain assumes the form 	(s) = kp/(Ls). Then, the closed-loop transfer
function, that is, 	(s)/(1+ 	(s)), becomes

Id(s)

Idref (s)
= Gi(s) = 1

τis+ 1
, (8.55)

if

kp = L/τi, (8.56)

ki = (R+ ron)/τi. (8.57)

where τi is the time constant of the resultant closed-loop system.
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Equation (8.55) indicates that, if kp and ki are selected based on (8.56) and (8.57),
the response of id(t) to idref (t) is based on a first-order transfer function whose time
constant τi is a design choice. τi should be made small for a fast current-control
response but adequately large such that 1/τi, that is, the bandwidth of the closed-loop
control system, is considerably smaller, for example, 10 times, than the switching
frequency of the VSC (expressed in rad/s). Depending on the requirements of a specific
application and the converter switching frequency, τi is typically selected in the range
of 0.5–5 ms. The same compensator as kd(s) can also be adopted for the q-axis
compensator kq(s). Example 8.2 demonstrates the design procedures.

EXAMPLE 8.2 Dynamic Performance of Real-/Reactive-Power
Controller

Consider the real-/reactive-power controller of Figure 8.3 with parameters L =
100 �H, R = 0.75 m�, ron = 0.88 m�, Vd = 1.0 V, VDC = 1250 V, and
fs = 3420 Hz. The AC system frequency and line-to-line rms voltage are ω0 =
377 rad/s and 480 V (i.e., Vsd = 391 V ), respectively. The transfer function of
the feed-forward filter is Gff (s) = 1/(8× 10−6s+ 1). The PLL of Example
8.1 is used to synchronize the dq-frame to the AC system voltage.

Assuming a closed-loop time constant of τi = 2.0 ms, based on (8.56) and
(8.57), we deduce the following d- and q-axis compensators:

kd(s) = kq(s) = 0.05s+ 0.815

s
[�].

The system is subjected to the following sequence of events: until t = 0.15 s,
the gating pulses are blocked and the controllers are inactive. This permits the
PLL to reach its steady state. At t = 0.15 s, the gating pulses are unblocked and
the controllers are activated, while Psref = Qsref ≡ 0. At t = 0.20 s, Psref is
subjected to a step change from 0 to 2.5 MW. At t = 0.30 s, Psref is subjected
to another step change from 2.5 to −2.5 MW. At t = 0.35 s, Qsref is subjected
to a step change from 0 to 1.0 MVAr.

Figure 8.12 illustrates the time responses of the VSC system to the start-up
process and the disturbances. Figure 8.12 illustrates thatPs andQs rapidly track
Psref andQsref , respectively. Figure 8.12 also shows that the responses ofPs and
Qs are decoupled when either of them is changed. Figure 8.12 also illustrates the
AC system phase-a voltage waveform, that is,Vsa, and the converter phase-a cur-
rent waveform, that is, ia. Figure 8.12 shows that ia is (i) in phase with Vsa when
(Ps,Qs) = (2.5 MW, 0), (ii) 180◦ behind Vsa when (Ps,Qs) = (−2.5 MW, 0),
and (iii) 158◦ behind Vsa when (Ps,Qs) = (−2.5 MW, 1.0 MVAr).

Figure 8.13 provides a close-up of id and iq around t = 0.20 s. Figure 8.13
verifies that the step response of id is that of a first-order exponential function
that reaches its final value at about t = 0.21 s, that is, after about 10 ms. It should
be noted that such an inspective verification is not readily possible for αβ-frame
current controllers of Chapter 7. The reason is that compensators in αβ-frame
are essentially of high dynamic orders, and so are the resultant closed-loop
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systems. To design αβ-frame compensators, we adopted the frequency response
method (Bode plots) that usually does not offer a quantitative insight into the
time-response characteristics of the closed-loop system, unless the closed-loop
system is predominantly a first-order or a second-order system. Figure 8.13 also
confirms that id and iq are well decoupled; it is observed that iq remains regulated
at zero while id is changing from zero to 4.26 kA. Ripples on the waveforms
of id and iq are due to the pulse-width modulation (PWM) switching side-band
harmonics of VSC AC-side currents, which are modulated by 60 Hz via the
abc- to dq-frame transformation.
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224 GRID-IMPOSED FREQUENCY VSC SYSTEM: CONTROL IN dq-FRAME

8.4.2 Selection of DC-Bus Voltage Level

As discussed in Sections 7.3.4, 7.3.5, and 7.3.6, the DC-bus voltage of the real-
/reactive-power controller of Figure 8.3 must satisfy the following criteria:

VDC ≥ 2V̂t, PWM, (8.58)

VDC ≥ 1.74V̂t, PWM with third-harmonic injection. (8.59)

Thus, one must properly evaluate V̂t under the worst-case operating condition. Since
the VSC system controls Ps and Qs, V̂t should also be expressed in terms of Ps
and Qs. Based on (8.45) and (8.46), and under the assumptions that Vsq = 0 and
(R+ ron) ≈ 0, we deduce

Vtd = L
did

dt
− Lω0iq + Vsd, (8.60)

Vtq = L
diq

dt
+ Lω0id. (8.61)

Substituting for id and iq from (8.41) and (8.42) in (8.60) and (8.61), and assuming
that Vsd is constant, we obtain

Vtd =
(

2L

3Vsd

)
dPs

dt
+

(
2Lω0

3Vsd

)
Qs + Vsd, (8.62)

Vtq = −
(

2L

3Vsd

)
dQs

dt
+

(
2Lω0

3Vsd

)
Ps. (8.63)

Based on (4.77), the amplitude of the AC-side terminal voltage is

V̂t =
√
V 2
td + V 2

tq. (8.64)

Furthermore, the amplitude of the modulating signal is

V̂t = m̂
VDC

2
. (8.65)

As discussed in Section 7.3.6, if the conventional PWM is employed, m̂ can assume
a value up to unity, whereas with the PWM with third-harmonic injection, m̂ can be
as large as 1.15.

To calculate the maximum of V̂t , consider the following worst-case scenario. Ini-
tially, the system is under a steady-state condition, that is, Ps = Psref = Ps0 and
Qs = Qsref = Qs0. At t = t0, Psref andQsref are subjected to step changes from Ps0
to Ps0 +Ps, and Qs0 to Qs0 +Qs, respectively. As discussed in Section 8.4.1,
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Ps and Qs respond to step changes in their corresponding reference commands as

Ps(t) = (Ps0 +Ps)−Pse
−(t−t0)/τi , (8.66)

Qs(t) = (Qs0 +Qs)−Qse
−(t−t0)/τi , (8.67)

for t ≥ t0. Substituting forPs(t) andQs(t) in (8.62) and (8.63), from (8.66) and (8.67),
we deduce

Vtd = Vsd +
(

2Lω0

3Vsd

)
(Qs0 +Qs)

+
(

2Lω0

3Vsd

)(
Ps

ω0τi
−Qs

)
e−(t−t0)/τi , (8.68)

Vtq =
(

2Lω0

3Vsd

)
(Ps0 +Ps)−

(
2Lω0

3Vsd

)(
Qs

ω0τi
+Ps

)
e−(t−t0)/τi . (8.69)

Equation (8.68) indicates that at t = t0, Vtd jumps from the initial value of Vsd +
( 2Lω0

3Vsd
)Qs0 to Vsd + ( 2Lω0

3Vsd
)Qs0 + ( 2L

3τiVsd
)Ps and then exponentially approaches the

final value of Vsd + ( 2Lω0
3Vsd

)(Qs0 +Qs). Equation (8.69) indicates that Vtq jumps

from the initial value of ( 2Lω0
3Vsd

)Ps0 to ( 2Lω0
3Vsd

)Ps0 − ( 2L
3τiVsd

)Qs at t = t0 and then

exponentially approaches the final value of ( 2Lω0
3Vsd

)(Ps0 +Ps). The worst-case sce-

nario corresponds to t = t+0 (immediately after t = t0) where the jumps in both Ps
and Qs coincide, and

Vtd(t+0 ) = Vsd +
(

2Lω0

3Vsd

)
Qs0 +

(
2L

3τiVsd

)
Ps, (8.70)

Vtq(t+0 ) =
(

2Lω0

3Vsd

)
Ps0 −

(
2L

3τiVsd

)
Qs. (8.71)

Depending on the steady-state power flow and the values of Ps and Qs, Vtd(t+0 )
and Vtq(t+0 ) can be estimated based on (8.70) and (8.71). The maximum AC-side
terminal voltage, V̂t(t

+
0 ), is then calculated from (8.64), based on Vtd(t+0 ) and Vtq(t+0 ).

Finally, the minimum required DC-bus voltage is calculated based on (8.58) or (8.59),
depending on the PWM strategy adopted. These calculations are demonstrated in
Example 8.3.

EXAMPLE 8.3 Selection of DC-Bus Voltage Level

Consider the real-/reactive-power controller of Example 8.2, in which Vsd =
0.391 kV, L = 100 �H, τi = 2.0 ms, and VDC = 1.250 kV. Assume that for
this system the worst-case scenario corresponds to Ps0 = 0, Ps = 2.5 MW,
Qs0 = 0, and Qs = 0. Thus, based on (8.70), (8.71), and (8.64), Vtd(t+0 ) =
0.604 kV, Vtq(t+0 ) = 0, and V̂t(t

+
0 ) = 0.604 kV. If the conventional sinusoidal
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FIGURE 8.14 Steady-state and dynamic responses of the modulating signals to step change
in Psref ; Example 8.3.

PWM is employed,VDC must be larger than 1.208 kV (equation (8.58)) to avoid
overmodulation. However, if the third-harmonic injected PWM is employed,
VDC can be lowered to about 1.050 kV (equation (8.59)). For the VSC system
of Example 8.2, VDC = 1.250 kV was selected since the conventional PWM
was employed.

Figure 8.14 illustrates the waveforms of md , mq, and m̂ for the VSC system
of Example 8.2. Figure 8.14 illustrates that at t0 = 0.2 s, m̂ jumps to 0.965,
corresponding to V̂t = 0.604 kV. Figure 8.14 also indicates that in this specific
example, the instant when the disturbance takes place coincides with the in-
stant when mb(t) reaches its negative peak; this corresponds to the worst-case
scenario. However, since the DC-bus voltage is adequately large, neither m̂ nor
|mb(t0)| exceed unity, and the VSC does not experience overmodulation.

8.4.3 AC-Side Equivalent Circuit

Traditionally, balanced three-phase linear circuits have been analyzed based on their
corresponding phasor diagrams and single-phase equivalent circuits. In the conven-
tional phasor analysis, which is restricted to steady-state conditions, the voltages
and currents are represented by phasors, and the passive elements are represented
by impedances. This section first presents a space-phasor diagram, analogous to
the conventional phasor diagram, for the AC side of the real-/reactive-power con-
troller of Figure 8.3. Then, the relationships between the magnitude/phase-angle of
an AC-side variable and the d-/q-axis components of the variable are identified. It is
also demonstrated that, under steady-state conditions, the space-phasor differential
equations of the real-/reactive-power controller become equivalent to the algebraic
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equations derived based on the conventional phasor-domain analysis. Finally, based
on the steady-state phasor model, a simplified equivalent circuit is presented for the
real-/reactive-power controller of Figure 8.3.

8.4.3.1 Space-Phasor Diagram of the AC Side With reference to the real-
/reactive-power controller of Figure 8.3, Vsabc, Vtabc, and iabc are

Vsa(t) = V̂s cos (θ) ,

Vsb(t) = V̂s cos

(
θ − 2π

3

)
,

Vsc(t) = V̂s cos

(
θ − 4π

3

)
, (8.72)

Vta(t) = V̂t cos (θ + δ) ,

Vtb(t) = V̂t cos

(
θ + δ− 2π

3

)
,

Vtc(t) = V̂t cos

(
θ + δ− 4π

3

)
, (8.73)

ia(t) = î cos (θ − φ) ,

ib(t) = î cos

(
θ − φ − 2π

3

)
,

ic(t) = î cos

(
θ − φ − 4π

3

)
, (8.74)

where θ = ω0t + θ0, and δ and −φ are the phase shifts of Vtabc and iabc with respect
to Vsabc, respectively. Vsabc, Vtabc, and iabc are equivalently expressed by the space
phasors

−→
Vs = V̂se

jθ, (8.75)
−→
Vt =

(
V̂te

jδ
)
ejθ, (8.76)

−→
i =

(̂
ie−jφ

)
ejθ. (8.77)

The space phasors
−→
Vt and

−→
i are phase shifted with respect to

−→
Vs by angles δ and

−φ, respectively. Under transient conditions, in addition to δ and φ, the magnitudes
of
−→
Vt and

−→
i (i.e., V̂t and î) can also change with time. In a steady state, however,
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δ, φ, V̂t , and î are constant values, and
−→
Vs ,

−→
Vt , and

−→
i assume constant lengths and

rotate with the constant angular frequency ω0.
Figure 8.15 illustrates the space phasors

−→
Vs ,
−→
Vt , and

−→
i on theαβ-plane. Figure 8.15

also shows a dq-frame whose d-axis makes an angle ρwith respect to theα-axis. The d
or q component of each space phasor is the projection of the space phasor on the corre-
sponding axis. Therefore, if dρ/dt = ω0, that is, the dq-frame rotates with the angular
speedω0, then Vsdq, Vtdq, and idq settle at constant values in steady state. As discussed
earlier in this chapter, the PLL not only guarantees dρ/dt = ω0 but also ensures that
ρ = θ; the latter implies that Vsq = 0 and Vsd = V̂s, as perceived from Figure 8.15.

To relate the lengths and phase angles of the space phasors to their d- and q-axis
components, we use the space-phasor to dq-frame transformation of (8.1), with ρ = θ.
This yields

Vsd + jVsq = V̂s, (8.78)

Vtd + jVtq = V̂te
jδ =

(
V̂t cos δ

)
+ j

(
V̂t sin δ

)
, (8.79)

id + jiq = îe−jφ =
(̂
i cosφ

)
+ j

(
−̂i sin φ

)
. (8.80)

It follows from (8.79) and (8.80) that

δ = tan−1 (Vtq/Vtd), (8.81)

φ = − tan−1 (iq/id). (8.82)

The angles of
−→
Vt and

−→
i with respect to theα-axis are identified as ε and ζ, respectively.

Figure 8.15 illustrates that ε = θ + δ and ζ = θ − φ. Thus,
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ε = θ + tan−1 (Vtq/Vtd), (8.83)

ζ = θ + tan−1 (iq/id). (8.84)

Figure 8.15 also shows that γ = ε− ζ is the angle of
−→
Vt with respect to

−→
i , that is,

γ is the power-factor angle of the three-phase circuit seen from the VSC AC-side
terminals. Based on (8.83) and (8.84), we deduce

γ = tan−1 (Vtq/Vtd)− tan−1 (iq/id). (8.85)

8.4.3.2 AC-Side Steady-State Equivalent Circuit The AC-side dynamics of the
real-/reactive-power controller of Figure 8.3 are described by (8.8). If the PLL is
under a steady-state condition, then ρ = ω0t + θ0 and (8.8) can be rewritten as

Vtdq − Vsdq − L
d

dt
idq =

[
jLω0 + (R+ ron)

]
idq, (8.86)

where fdq = fd + jfq and ω0 = dρ/dt. In a steady state, the time derivative is zero
and we obtain

Vtdq − Vsdq =
[
jLω0 + (R+ ron)

]︸ ︷︷ ︸
Z

idq = Zidq, (8.87)

which is identical to the conventional phasor-domain equation for an equivalent single-
phase circuit. Although (8.87) is valid under steady-state conditions, it may also be
employed for analysis and control design purposes, if a quasi-steady-state condition
is assumed. In this case, id and iq are not constant quantities, but change relatively
slowly with time. Therefore, did/dt and diq/dt are insignificant and can be ignored
in the analysis.

Figure 8.16(a) illustrates a time-domain equivalent circuit for the AC side of the
real-/reactive-power controller of Figure 8.3. Based on (8.86), the circuit of Figure
8.16(a) can be represented by the space-phasor-domain equivalent circuit of Figure
8.16(b). In the circuit of Figure 8.16(b), all the time-domain variables of the origi-
nal circuit are represented by the corresponding space phasors. Thus, the equivalent
circuit is valid under both dynamic and steady-state operating conditions. If a quasi-
steady-state condition is assumed, based on (8.87) the circuit of Figure 8.16(a) can
be represented by the steady-state phasor-domain circuit of Figure 8.16(c).

Substituting for
−→
Vs and

−→
i , from (8.75) and (8.77), in (4.40), we deduce

Ps = 3

2
V̂ŝi cosφ, (8.88)

Qs = 3

2
V̂ŝi sin φ. (8.89)
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FIGURE 8.16 Equivalent circuits for AC side of the real-/reactive-power controller of Figure
8.3: (a) time-domain equivalent circuit; (b) dynamic space-phasor-domain equivalent circuit;
(c) quasi-steady-state space-phasor-domain equivalent circuit.
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Equations (8.88) and (8.89) exhibit the same forms as their counterparts in the con-
ventional phasor-domain analysis. However, they are also valid for dynamic operating
regimes where V̂s, î, and φ can all be functions of time.

8.4.4 PWM with Third-Harmonic Injection

In Section 7.3.6, we explained the need for the third-harmonic injected PWM as a
means for extending the VSC permissible voltage range. We then formulated the
third-harmonic injected PWM and presented the block diagram of Figure 7.11 for its
implementation in αβ-frame. Figure 8.17 shows a block diagram equivalent to that of
Figure 7.11, for the third-harmonic injected PWM in dq-frame.

As explained in Section 7.3.6, the modulating signals for the third-harmonic in-
jected PWM are constructed by mabc, based on (7.61)–(7.63). Thus, as shown in
Figure 8.17, we obtain mabc from the dq- to abc-frame transformation of md and mq.
The third-harmonic injected PWM also requires m̂2, as indicated by (7.61)–(7.63).

Therefore, we express m̂2 in terms of md and mq as m̂ =
√
m2
d +m2

q (Fig. 8.17).

Figure 8.18 shows a schematic diagram of a real-/reactive-power controller that
employs the third-harmonic injected PWM. The real-/reactive-power controller of

ˆ

dq - to abc-frame transformer for third-harmonic injection

Equation (7.61)

Equation (7.62)

Equation (7.63)

abc

dq

maug-c

maug-b

maug-a

m2

ma

md

mq

mb

mc

ρ

(·)2

(·)2

(·)3 2/3

2/3

–

–

–

2/3

3/2

3/2

3/2

(·)3

(·)3

FIGURE 8.17 Block diagram of dq- to abc-frame signal transformer to generate modulating
signals for third-harmonic injected PWM.
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FIGURE 8.18 Schematic diagram of real-/reactive-power controller utilizing the third-
harmonic injected PWM.

Figure 8.18 is the same as the real-/reactive-power controller of Figure 8.3 in which
the mdq-to-mabc block is replaced by the block diagram of Figure 8.17. The VSC
employed in the real-/reactive-power controller of Figure 8.18 can be a two-level
VSC or a three-level NPC. Figure 8.18 also illustrates that for the VSC system with
the third-harmonic injected PWM, maug-abc is limited to ±1, which corresponds to
the limit of ±1.15 for mabc. Thus, using the third-harmonic injected PWM, the VSC
AC-side terminal voltage can reach up to±1.15(VDC/2), instead of±(VDC/2) under
the conventional PWM.

8.5 REAL-/REACTIVE-POWER CONTROLLER BASED ON
THREE-LEVEL NPC

The real-/reactive-power controllers of Figures 8.3 and 8.18 can also utilize the three-
level NPC (Fig. 8.19) as the power processor. Based on the unified dynamic model of
Section 6.7.4 presented for the two-level VSC and the three-level NPC, the dq-frame
model and control design procedures presented in Sections 8.3 and 8.4 are equally
applicable to both the two-level VSC and the three-level NPC. However, as shown in
Figure 8.19, the three-level NPC also requires a DC-side voltage equalizing scheme,
as discussed in Section 6.7.2.



REAL-/REACTIVE-POWER CONTROLLER BASED ON THREE-LEVEL NPC 233

Effective capacitance:  C
Three-level NPC

Figure 6.6

DC-side voltage balancer
Figure 6.17 or Figure 8.20

PWM generator
3x Figure 6.3 

VDC

is ip

inp

in

Vta ia

ib

ic

mcmbma

m0

Vtb

Vtc

V1

V2

4 4 4

2C

2C

0

FIGURE 8.19 Block diagram of the three-level NPC.

Figure 8.20 illustrates a control block diagram of the DC-side voltage equalizing
scheme. Figure 8.20 indicates that the control plant is an integrator whose gain is
proportional to −Ps, that is, the real power that the VSC system exchanges with the
AC system. Thus, the output of the compensator K(s) is multiplied by −1 if Ps is

FIGURE 8.20 Control block diagram of the partial DC-side voltage equalizing scheme for
the three-level NPC.
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positive, to ensure a negative feedback irrespective of the direction of the power flow.
Ps can be readily calculated using Ps = (3/2)Vsdid or, assuming a fast d-axis current
controller, approximated by Psref . Figure 8.20 also shows that the difference between
the partial DC-side voltages is fed back through a filter, F (s). The filter is required to
attenuate the third-order harmonic component of the measured signal and prevent it
from distorting the corrective offset m0. Details of modeling, derivation of the block
diagram of Figure 8.20, and the compensator design approach for the DC-side voltage
equalizing scheme are given in Section 7.4.

8.6 CONTROLLED DC-VOLTAGE POWER PORT

Previous sections presented the model and controls of the real-/reactive-power con-
troller (Figs. 8.3 and 8.18), whose function is to control the real and reactive power
that is exchanged with the AC system. In the real-/reactive-power controller, the VSC
DC-bus voltage is impressed by an ideal, DC, voltage source, and the VSC system
acts as a bidirectional energy exchanger between the AC system and the DC voltage
source. However, in many applications, for example, photovoltaic (PV) systems and
fuel-cell systems, the VSC DC side is not interfaced with a voltage source; rather, it
is connected to a (DC) power source that needs to be interfaced and exchange (real)
power with the AC system. Thus, the DC-bus voltage is not imposed and, therefore,
needs to be regulated. This scenario is illustrated in Figure 8.21.

The VSC system of Figure 8.21 is conceptually the same as that of Figure 8.18,
except that the DC voltage source is replaced by a (variable) DC power source. The
power source typically represents a power-electronic unit (or a cluster of them) with
a prime source of energy, for example, a PV array, a variable-speed wind turbine-
generator set, a fuel-cell unit, or a gas turbine-generator set, behind it, and is considered
as a black box in our investigations. The power source is assumed to exchange a time-
varying power, Pext(t), with the VSC DC side. Thus, the VSC system of Figure 8.21
enables a bidirectional power exchange between the power source (black box) and
the AC system. We refer to the VSC system of Figure 8.21 as controlled DC-voltage
power port, which is employed as an integral part of the STATCOM, the back-to-back
HVDC converter system, and variable-speed wind-power units; these are discussed
in Chapters 11, 12, and 13, respectively.

The main control objective for the controlled DC-voltage power port is to regulate
the DC-bus voltage VDC. As Figure 8.21 illustrates, the kernel of the controlled DC-
voltage power port is the real-/reactive-power controller of Figure 8.18 by which Ps
and Qs can be independently controlled. Therefore, to regulate the DC-bus voltage,
a feedback mechanism compares VDC with its reference command and accordingly
adjusts Ps, such that the net power exchanged with the DC-bus capacitor is kept
at zero. However, the reactive power Qs can be independently controlled. In many
applications, Qs is regulated at zero, that is, the VSC system operates at unity power
factor. Alternatively, Qs may be controlled in a closed-loop mechanism to regulate
the PCC voltage, as discussed in Chapter 11.
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8.6.1 Model of Controlled DC-Voltage Power Port

The main control requirement of the controlled DC-voltage power port of Figure 8.21
is to regulate the DC-bus voltage, VDC. Equivalently, as discussed in Section 7.5.1,
we choose to regulate V 2

DC rather than VDC. Based on (7.92), dynamics of V 2
DC are

described by

dV 2
DC

dt
= 2

C
Pext − 2

C
Ploss − 2

C

[
Ps +

(
2LPs
3V 2

sd

)
dPs

dt

]

+ 2

C

[(
2LQs

3V 2
sd

)
dQs

dt

]
, (8.90)

where V̂s of (7.92) is replaced by Vsd . Based on the unified dynamic model of the
two-level VSC and the three-level NPC that was presented in Section 6.7.4, (8.90)
is valid for both VSC configurations. Based on (8.90), V 2

DC is the output, Ps is the
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control input, and Pext , Ploss, and Qs are the disturbance inputs. As shown in Figure
8.21, V 2

DC is compared with V 2
DCref , the error signal is processed by the compensator

Kv(s), and the command Psref is issued for the real-power controller. The real-power
controller, in turn, regulates Ps at Psref , while Qs can be independently controlled.
Qsref can be set to a nonzero value if an exchange of reactive power with the AC
system is required. In an AC system with a large impedance, the PCC voltage is
subject to variations as Ps changes with time (i.e., due to the changes of Pext). In this
case, the PCC voltage can be regulated by controlling Qs in a closed-loop system
that feeds the PCC voltage back and commands Qsref ; this reactive-power control
strategy is discussed in Chapter 11.

To derive the transfer function Gp(s) = Ps(s)/Psref (s), we note that

Id(s) = Gi(s)Idref (s), (8.91)

where Gi(s) is given by (8.55). Assuming that Vsd is constant, multiplying both sides
of (8.91) by (3/2)Vsd , we obtain

Ps(s) = Gi(s)Psref (s). (8.92)

Therefore, Gp(s) = Gi(s) and based on (8.55), we have

Ps(s)

Psref (s)
= Gp(s) = 1

τis+ 1
. (8.93)

The form of (8.93) is intuitively expected as real power in dq-frame is proportional to
id . The control plant described by (8.90) is nonlinear due to Ps

dPs
dt

and Qs
dQs

dt
terms.

The linearized plant is provided by (7.94), which is repeated here as (8.94), in which
V̂s is substituted by Vsd .

dṼ 2
DC

dt
= 2

C
P̃ext − 2

C

[
P̃s +

(
2LPs0
3V 2

sd

)
dP̃s

dt

]

+ 2

C

[(
2LQs0

3V 2
sd

)
dQ̃s

dt

]
, (8.94)

where superscripts ∼ and 0 represent, respectively, small-signal perturbations and
steady-state values of the variables. Applying Laplace transform to (8.94), we deduce
the transfer function Gv(s) = Ṽ 2

DC/P̃s as

Gv(s) = Ṽ 2
DC(s)/P̃s(s) = −

(
2

C

)
τs+ 1

s
, (8.95)
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where the time constant τ is

τ = 2LPs0
3V 2

sd

= 2LPext0
3V 2

sd

. (8.96)

Equation (8.96) indicates that τ is proportional to the (steady-state) real-power flow
Pext0 (or Ps0). Thus, if Pext0 is small, τ is insignificant and the plant is predominantly
an integrator. As Pext increases, τ becomes larger and causes a shift in the phase of
Gv(s). In the inverting mode of operation where Pext0 is positive, τ is also positive
and adds to the phase of Gv(s). However, in the rectifying mode of operation, that is,
wherePext0 is negative, τ is negative and results in reduction in the phase ofGv(s); the
phase drops further as the absolute value of Pext0 becomes larger. Based on (8.95),
the plant zero is given by z = −1/τ. Therefore, a negative τ corresponds to a zero on
the right-half plane (RHP). Consequently, the controlled DC-voltage power port is a
non-minimum-phase system in the rectifying mode of operation [72]. As discussed
in Section 8.6.3, this non-minimum-phase property has a detrimental impact on the
system stability and must be accounted for in the control design process [72].

8.6.2 Control of Controlled DC-Voltage Power Port

Figure 8.22 shows a block diagram of the DC-bus voltage controller for the controlled
DC-voltage power port of Figure 8.21. The closed-loop system is composed of the
compensator Kv(s), real-power controller Gp(s), and control plant Gv(s), which is
described by (8.95). Figures 8.21 and 8.22 indicate that Kv(s) is multiplied by −1 to
compensate for the negative sign of Gv(s). The closed-loop system of Figure 8.22 is
identical to that of Figure 7.23 for which the design guidelines have been provided
in Section 7.5.2 and are, therefore, equally applicable to the closed-loop system of
Figure 8.22. As described in Section 7.5.2, Kv(s) should include an integral term and
a lead transfer function. The lead transfer function compensates for the plant phase
lag and ensures an adequate phase margin at the gain crossover frequency. Based on
(8.95) and (8.96), Gv(s) has the largest phase lag when Pext is at its rated negative
value. If an adequate phase margin can be guaranteed at this operating point, the
closed-loop system remains stable for other operating points.

–
−−

Composite control plantDC-bus voltage controller
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dynamics

2
C s
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20
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Psref

VDC

PsKV (s) Gp (s)
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( )

FIGURE 8.22 Control block diagram of DC-bus voltage controller based on the linearized
model.
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As outlined in Section 7.5.2, to design Kv(s), we first select the gain crossover,
ωc, to be adequately smaller than the bandwidth of Gp(s), such that one can assume
Gp(jωc) ≈ 1+ j0. Then, Kv(s) is designed for an adequately large phase margin
under the worst-case operating condition. The design method presented in Section
7.5.2 was based on frequency response. The reason was that based on the αβ-frame
controlGp(s) typically is a high-order transfer function and primarily characterized by
its bandwidth rather than its pole/zero map. Here, however,Gp(s) (as given by (8.93))
is a first-order transfer function and the root-locus design method is also an option.
The advantage of the root-locus method is that performance indices, for example,
maximum overshoot and settling time, are related to the pole/zero loci in a more
straightforward manner and can be readily taken into account in the design process.

EXAMPLE 8.4 Design of DC-Bus Voltage Controller in dq-Frame

Consider the controlled DC-voltage power port of Figure 8.21 that employs the
three-level NPC of Figure 8.19. Parameters of the system are 2C = 19,250 �F,
L = 200 �H, R = 2.38 m�, ron = 0.88 m�, Vd = 1.0 V, VDC = 2500 V, fs =
1680 Hz,Vsd = 391 V, andω0 = 377 rad/s. The rated power of the VSC system
is Ps = ±2.5 MW, and the third-harmonic injected PWM strategy is adopted.

With reference to Figure 8.20, the controllers of the DC-side voltage equal-
izing scheme are

K(s) = 0.0007 [V−1],

F (s) = s2 + (3ω0)2

(s+ 3ω0)2 = s2 + 11312

s2 + 2262s+ 11312 .

From (8.56) and (8.57), for τi = 1.0 ms parameters of the dq-frame current
controllers must be kp = 0.2 � and ki = 3.26 �/s, which correspond to

Gp(s) = Gi(s) = 1000

s+ 1000
. (8.97)

The DC-bus voltage controller is designed based on the block diagram of Figure
8.22. In Figure 8.22, Gv(s) is a function of the operating point (see equations
(8.95) and (8.96)). Therefore, Kv(s) is designed for the worst-case operating
point in the rectification mode, corresponding to Pext0 = −2.5 MW. Equation
(8.97) indicates that the bandwidth ofGp(s) is 1000 rad/s. Thus, for the control
loop of Figure 8.22, we choose ωc to be about one-fifth of the bandwidth of
Gp(s), that is, 200 rad/s, to avoid excessive phase lag in the loop.

Based on Figure 8.22, the loop gain is

	(s) = −Kv(s)Gp(s)Gv(s), (8.98)
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where Gv(s) and Gp(s) are given by (8.95) and (8.97), respectively. To ensure
zero steady-state errors, Kv(s) must include an integral term. Let Kv(s) be

Kv(s) = N(s)
k0

s
, (8.99)

where N(s) is a proper transfer function with no zero at s = 0, and k0 is a
constant gain. Substituting for Gv(s) and Kv(s) in (8.98), respectively, from
(8.95) and (8.99), we obtain

	(s) = N(s)k0

(
2

C

)
τs+ 1

s2 (0.001s+ 1)
. (8.100)

If N(s) = 1, then k0 = 180 yields |	(j200)| = 1 and

	(s) = 37423
τs+ 1

s2 (0.001s+ 1)
. (8.101)

We refer to (8.101) as the uncompensated loop gain.
Figure 8.23 illustrates the magnitude and phase plots of the uncompensated

loop gain, for Pext0 = 2.5 MW, Pext0 = 0, and Pext0 = −2.5 MW. Figure 8.23
shows that the magnitude response of the uncompensated loop gain is similar
for all three operating points, and |	(j200)| = 1. However, ∠	(j200) is−168◦,
−191◦, and −215◦, corresponding to Pext0 = 2.5, 0, and −2.5 MW, respec-
tively. Therefore, the closed-loop system is poorly stable for Pext0 = 2.5 MW,
and unstable for Pext0 = 0 and Pext0 = −2.5 MW. To ensure a stable closed-
loop system for all operating points, we correct ∠	(j200) by letting N(s) in
(8.100) be the lead filter

N(s) = n0
s+ (p/α)

s+ p1
, (8.102)

where p is the filter pole, α (> 1) is a real constant, and n0 is the filter gain. The
maximum phase of the filter is given by

δm = sin−1
(
α− 1

α+ 1

)
, (8.103)

which corresponds to the frequency

ωm = p√
α
. (8.104)

Thus, if a phase margin of, for example, 45◦ is desired for Pext = −2.5 MW,
then ∠N(j200) is required to be 80◦. Solving for α, p, and n0, with δm = 80◦,
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ωm = 200 rad/s, and |N(j200)| = 1, we obtain

N(s) = 10.38
s+ 19

s+ 2077
. (8.105)

Substituting for N(s) in (8.99) and (8.100), from (8.105), we obtain

	(s) = 388455

(
s+ 19

s+ 2077

)(
τs+ 1

s2 (0.001s+ 1)

)
, (8.106)

Kv(s) = 1868
s+ 19

s (s+ 2077)
[�−1]. (8.107)

We refer to the loop gain of (8.106) as the compensated loop gain. Figure 8.23
also shows the magnitude and phase plots of the compensated loop gain, for
Pext0 = 2.5, 0, and −2.5 MW. Figure 8.23 illustrates that |	(j200)| = 1 for
all three operating points. Moreover, ∠	(j200) is −89◦, −112◦, and −135◦,
corresponding to Pext0 = 2.5, 0, and−2.5 MW, respectively. Thus, the closed-
loop system is stable for the three operating points with a phase margin ranging
from 45◦ to 91◦.

Figure 8.24 illustrates the response of the controlled DC-voltage power port
of Figure 8.21 to the start-up process as well as stepwise changes in Pext . The
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FIGURE 8.24 Dynamic performance of the controlled DC-voltage power port of Example
8.4 when feed-forward compensation is not in service.
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results of Figure 8.24 are obtained under the condition that the feed-forward
compensation in the DC-bus voltage control loop is disabled, and the VSC
system is subjected to the following sequence of events.

Initially, Pext = 0, the VSC gating signals are blocked, and the controllers
are inactive. However, the DC-side capacitors of the VSC are charged via
antiparallel diodes of VSC switch cells, and VDC increases to about 700 V.
At t = 0.20 s, gating signals are unblocked, all controllers are activated, and
VDCref is changed stepwise from 700 to 2500 V. Consequently, to move VDC
up, Kv(s) commands a negative Psref to import real power from the AC system
to the VSC DC side; Psref is saturated to its negative limit for a brief period.
At about t = 0.30 s, VDC is regulated at VDCref = 2500 V, and Psref and Ps
assume small values corresponding to the VSC power loss. Figure 8.24 also
shows that Pext changes stepwise from 0 to 2.5 MW, at t = 0.35 s, which entails
an overshoot in VDC. The compensator reacts to this disturbance and increases
Psref (and thus Ps increases) to bring VDC back to 2500 V. At t = 0.50 s, Pext
changes stepwise from 2.5 to −2.5 MW. Consequently, VDC undergoes an
undershoot until the compensator reacts and reduces Psref . It should be noted
that the pattern of the undershoot at t = 0.50 s is different from that of the
overshoot at t = 0.35 s. The reason is that, as Figure 8.23 illustrates, the phase
margin (and frequency response) is considerably different for these two op-
erating points. Therefore, the system response to disturbances is also different
for the two operating points. At t = 0.65 s, Qsref assumes a step change from 0
to 1.0 MVAr. This disturbance, however, has no significant impact on VDC, as
Figure 8.24 illustrates. The reason is that, based on (8.90), the contribution of
Qs to dV 2

DC/dt is weighted by the term 2L/(3V 2
sd), which typically is a small

value.
Figure 8.25 illustrates the response of the controlled DC-voltage power port

of Figure 8.21 to the same disturbances as described above, but with the feed-
forward compensation of the DC-bus voltage control loop enabled (i.e., a mea-
sure of Pext is added to the output of Kv(s), Fig. 8.21). A comparison between
Figures 8.25 and 8.24 indicates that deviations of VDC from VDCref are consid-
erably smaller when the feed-forward compensation is employed. The reason
is that any change in Pext is rapidly communicated to Psref , and the balance of
power is quickly regained.

8.6.3 Simplified and Accurate Models

The DC-bus voltage dynamics, described by (8.90), are nonlinear; the nonlinearity is
due to the presence of the instantaneous power of VSC interface reactors. Thus, in
the linearized model of (8.95), the time constant τ is a function of the operating point.
Based on (8.96), τ is negative in the rectifying mode of operation and results in exces-
sive phase lag in the loop gain. This phase lag can lead to unsatisfactory performance
or even instabilities if it is not taken into account in the compensator design.

In the technical literature, the instantaneous power of the interface reactors is often
ignored [73–76], that is, it is assumed that L ≈ 0 and Pt = Ps. We refer to this model
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FIGURE 8.25 Dynamic performance of the controlled DC-voltage power port of Example
8.4 when feed-forward compensation is enabled.

as the simplified model, which can then be derived from (8.95) by substituting for
τ = 0.

Gv(s) = V 2
DC(s)/Ps(s) = −

(
2

C

)
1

s
. (8.108)

The transfer function (8.108) indicates that the simplified model corresponds to the
accurate model of (8.95) for the zero real-power operating point, that is, Pext0 =
0. However, as demonstrated in Example 8.4, the zero real-power operating point
does not correspond to the worst-case scenario in terms of the compensator design,
since the loop gain phase continues to drop in the rectifying mode of operation.
Consequently, compensator design based on the simplified model of (8.108) may
result in poor performance or even instabilities [72]. This is further highlighted in
Example 8.5.

EXAMPLE 8.5 Instability in Rectifying Mode of Operation

Consider the controlled DC-voltage power port of Example 8.4 for whichGp(s)
is given by (8.97). Assume that we have to design a PI compensator, for the
closed-loop system of Figure 8.22, based on the simplified model of (8.108).
Thus, the loop gain includes a double integrator and a negative real pole (i.e.,
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FIGURE8.26 Instability of the DC-bus voltage controller in the rectifying mode of operation;
Example 8.5.

the pole of Gp(s)); the compensator design process requires to identify the
zero and the gain of the PI compensator. For a loop gain that possesses two
integrators (including that of the PI compensator) and one first-order lag, the
method of symmetrical optimum can be effectively employed to determine the
compensator zero [43]. Based on the symmetrical optimum method, one obtains
the following compensator that yields a phase margin of 45◦ and a crossover
frequency of ωc = 415 rad/s:

Kv(s) = 1.996
s+ 172

s
[�−1]. (8.109)

Since the simplified model of (8.108) does not exhibit any dependence on
the operating point, one would expect that the closed-loop system remains
stable over the entire power range. This is, however, not the case. Figure 8.26
illustrates that while the closed-loop system is stable for Pext = 2.5 MW, it
becomes oscillatory and unstable when Pext drops from 2.5 to about−2.1 MW.
The reason is that the actual control plant, described by (8.95) rather than
(8.108), exhibits a non-minimum-phase zero when Pext becomes negative. For
this example, two of the three closed-loop poles lie on the RHP when Pext
becomes smaller than about −2.1 MW. These two poles are s = 4.42± j535
rad/s and correspond to the observed unstable oscillatory response.



9 Controlled-Frequency VSC System

9.1 INTRODUCTION

Chapters 7 and 8 discussed control and operation of the grid-imposed frequency
VSC system in which the operating frequency was predetermined and imposed by
the AC system. These chapters implicitly translated the control of the grid-imposed
frequency VSC system into the control of real and reactive power that the VSC system
exchanges with the AC system, through a current-mode control strategy. This chapter
investigates a class of VSC systems in which the operating frequency is not imposed
by the AC system, but it is controlled by the VSC system itself. We refer to this class
as controlled-frequency VSC system, in which the voltage and frequency at the point
of common coupling (PCC) are controlled; thus, the real and reactive power that the
VSC system exchanges with the AC system are the by-products.

Typical scenarios where a controlled-frequency VSC system is encountered
include

� an electronically coupled distributed generation (DG) or distributed energy
storage (DES) unit1 that supplies a dedicated load, or a cluster of loads,
under an islanded (off-grid) condition;

� a VSC-based HVDC converter system that supplies a passive or weak AC system;
and

� an uninterruptible power supply (UPS) system that adopts a VSC system as its
kernel to regulate the frequency and voltage of a sensitive load, for example,
under emergency conditions.

In this chapter, we first present a dq-frame model for the controlled-frequency VSC
system and then introduce a control strategy that does not require prior knowledge
of the load model. We achieve this objective through a feed-forward compensation
technique that can effectively decouple the VSC system dynamics from those of
the load. Finally, we investigate transitions of the VSC system from the controlled-
frequency mode to the grid-imposed frequency mode, and vice versa.

1These are collectively referred to as distributed energy resource (DER) units.
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